Segmentation with Non-linear Regional Constraints via Line-Search Cuts

نویسندگان

  • Lena Gorelick
  • Frank R. Schmidt
  • Yuri Boykov
  • Andrew Delong
  • Aaron D. Ward
چکیده

This paper is concerned with energy-based image segmentation problems. We introduce a general class of regional functionals defined as an arbitrary non-linear combination of regional unary terms. Such (high-order) functionals are very useful in vision and medical applications and some special cases appear in prior art. For example, our general class of functionals includes but is not restricted to soft constraints on segment volume, its appearance histogram, or shape. Our overall segmentation energy combines regional functionals with standard length-based regularizers and/or other submodular terms. In general, regional functionals make the corresponding energy minimization NP-hard. We propose a new greedy algorithm based on iterative line search. A parametric max-flow technique efficiently explores all solutions along the direction (line) of the steepest descent of the energy. We compute the best “step size”, i.e. the globally optimal solution along the line. This algorithm can make large moves escaping weak local minima, as demonstrated on many real images.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Medical image segmentation via min s-t cuts with side constraints

Graph cut algorithms (i.e., min s-t cuts) [3][10][15] are useful in many computer vision applications. In this paper we develop a formulation that allows the addition of side constraints to the min s-t cuts algorithm in order to improve its performance. We apply this formulation to foreground/background segmentation and provide empirical evidence to support its usefulness. From our experiments ...

متن کامل

Mesh Segmentation via Recursive and Visually Salient Spectral Cuts

We develop a new mesh segmentation algorithm via recursive spectral 2-way cut and Nyström approximation. The cut is performed on 1-D spectral embeddings, which are efficiently computed from appropriately defined distances between the set of mesh faces and only two sample faces. By using a novel sampling scheme based on shape context and a line search over the 1-D embeddings to locate the most p...

متن کامل

Improving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth

Background: Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging.Objective: This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regiona...

متن کامل

Interactive Graph Cuts for Optimal Boundary & Region Segmentation of Objects in N-D Images

In this paper we describe a new technique for general purpose interactive segmentation of N-dimensional images. The user marks certain pixels as “object” or “background” to provide hard constraints for segmentation. Additional soji constraints incorporate both boundary and region information. Graph cuts are used to find the globally optimal segmentation of the N-dimensional image. The obtained ...

متن کامل

DT-MRI Segmentation Using Graph Cuts

An important problem in medical image analysis is the segmentation of anatomical regions of interest. Once regions of interest are segmented, one can extract shape, appearance, and structural features that can be analyzed for disease diagnosis or treatment evaluation. Diffusion tensor magnetic resonance imaging (DT-MRI) is a relatively new medical imaging modality that captures unique water dif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012